Journal Club – “The nature of the active ingredient in ultramolecular dilutions”

January 1st, 2000 by Ben Goldacre in journal club | 1 Comment »

This is part of the Homeopathy Journal Club, more info here:

www.badscience.net/?p=490

doi:10.1016/j.homp.2007.05.005    How to Cite or Link Using DOI (Opens New Window)
Copyright © 2007 Elsevier Ltd All rights reserved. The nature of the active ingredient in ultramolecular dilutions

Otto WeingärtnerCorresponding Author Contact Information, a, E-mail The Corresponding Author
aDepartment of Basic Research, Dr. Reckeweg & Co. GmbH, Berliner Ring 32, D 64625 Bensheim, Germany
Received 8 March 2007;  revised 14 May 2007.  Available online 31 July 2007.

Abstract

This paper discusses the nature of the active ingredient of homeopathic ultramolecular dilutions in terms of quantitative physics.

First, the problem of the nature of an active ingredient in ultramolecular dilutions is analysed leading to the recognition of the necessity of characterizing the active ingredient as a non-local quality.

Second, non-locality in quantum mechanics, which is used as a paradigm, is formally presented.

Third, a generalization of quantum mechanics is considered, focussing on the consequences of weakening of the axioms.

The formal treatment leads to the possible extension of the validity of quantum theory to macroscopic or even non-physical systems under certain circumstances with a while maintaining non-local behaviour. With respect to the survival of entanglement in such non-quantum systems a strong relationship between homeopathy and non-local behaviour can be envisaged. I describe how several authors apply this relationship. In conclusion, the paper reviews how quantum mechanics is closely related to information theory but why weak quantum theory and homeopathy have not hitherto been related in the same way.

Keywords: potencies; non-locality; entanglement; weak quantum-theory; information

Article Outline

Introduction
Necessity of a general principle
How non-locality arose
What is entanglement?
Weakening the axioms of quantum mechanics
WQT and homeopathy
Entanglement and information in quantum physics and beyond
Discussion
Acknowledgements
Appendix A. The sequential box model (SBM)
Appendix B. Entanglement
References


Introduction

When I started basic research on homeopathy more than 20 years ago I endeavoured to describe homeopathic potencies according to the laws of physics as far as possible. This soon led me to the hypothesis of a field being responsible for the homeopathic phenomenon. In investigating this hypothesis I learned from biophysics that such a field has to be closely related to electromagnetism, because of the ability of living organisms to react in a specific way on electromagnetic signals.1 I concluded that the mechanism of homeopathic effects must be similar to resonances between electromagnetic waves and started to search for stored patterns of electromagnetic origin or, more generally, of physically measurable properties which differ between potencies and their solvent.

The results of the series of experiments that were carried out with a variety of standard physical–chemical methods2 were disappointing. Almost none of the experiments could reproduce results reported in specialist literature, and for no experimental arrangement could the results be forecast. However, the totality of experiments with nuclear magnetic resonance (NMR) showed a clear tendency in favour of a difference between potencies and their solvent in the water- and OH-portions of the ethanol–water-molecule.3 I was quite pleased with this tendency, which is now being investigated by other researchers,4 but I realized that looking for effects without having any clue of their significance is hazardous. Therefore, I started building models for the ‘Therapeutically Active Ingredient’ (TAI) and it soon became clear that models for the TAI have to have holistic character.5

While playing with models, I developed a construct which I called the ‘Sequential Box Model’ (SBM, see Appendix A). SBM is a thought experiment illustrating that the homeopathic phenomenon can be treated within physics with no consideration of the degree of dilution. Furthermore, the SBM explicitly underlines the long-standing presumption that for a TAI to emerge during the potentization procedure a quality beyond ordinary correlation between particles has to occur or be in existence already.

About this time the idea of the so-called ‘quantum computing’ was proposed in computer science.[6] and [7] This involves the idea of non-local correlations between states of entities. For my work, such non-local behaviour was the missing link between the SBM and a possible TAI, particularly as it was already known that non-local behaviour can occur in non-quantum systems under certain circumstances. The relationship between non-local behaviour of events in nature and the homeopathic phenomenon may give a clue to the ‘nature of the active ingredient in ultramolecular dilutions’ (NAIUD). It is the aim of this paper to analyse this relationship without going too far into technical details.

Necessity of a general principle

When we talk about the active ingredient of ultramolecular dilutions as used in homeopathy, we mean a non-material quality which—according to the principles of homeopathy—can be traced back to a substance. Moreover, this quality is understood to be able to make the symptoms of a patient disappear when administered via a vehicle. Many people call this quality ‘information’. Let us first look at the set of events that are required for a therapeutic active ingredient to develop out of a substance. In this context, the existence of a TAI is temporarily assumed as being proven by successful treatment (Figure 1).

1. First of all, a proving (homeopathic pathogenetic trial) must have been conducted resulting in a drug picture with specific symptoms.

2. A mother tincture is prepared from the substance.

3. Apart from some specific procedures for the preparation of low potencies that depend on the nature of the substance itself, the mother tincture is potentized stepwise with no consideration of the degree of dilution. Dilutions far beyond Avogadro’s number are used in daily practice.

4. When a homeopathic potency is prescribed, this is done according to the law of similars without consideration of the occurrence or not, of any molecule of the original substance in the medicine administered.

5. An artificial disease is triggered off resulting in healing.

These points demonstrate that the active ingredient of homeopathic potencies might have a variety of possible originators, especially when we only look at the squares and arrows in Figure 1 separately. There is no reason as to why two or more of these originators should complement one another. But if we look at Figure 1 as a whole, the necessity of a general principle becomes obvious. For such a principle, the symptoms of the homeopathic drug picture, the principle of releasing hidden energies of the substances by potentizing, the law of similars and the triggering of an artificial disease are specific projections. The problem is, how to specify this principle, especially with respect to the following questions:

1. Could such a general principle possibly be derived from the presence of a physical field?

2. For ultramolecular dilutions, interactions between molecules of the solute and those of the solvent do not make sense in terms of current scientific understanding. How can this be resolved?

3. Are there any reliable arguments for a concept of a global influence being responsible for an active ingredient in homeopathic potencies? Rupert Sheldrake’s morphogenetic field8 might serve as an example of such a concept.

In physics, fields are inevitably linked to interaction between material partners via interaction-particles. Photons, for instance, are the interaction-particles of the electromagnetic field.9 Thus, potentization as well as treatment with potencies—procedures that implicitly do not depend on matter–matter-interaction—are not primarily based on physical fields.


Display Full Size version of this image (24K)

Figure 1. Schema of events which are required for a TAI to: (a) develop out of a substance, and (b) proved to be existent by successful treatment. Arrows represent procedures, they map states onto states.

Both procedures, however, suggest mind–matter and matter–mind correlations.

1. Neither a specific chemical nor a specific physical property of the original substance is known to be transferred during the preparation of potencies although mother tinctures, which of course contain many molecules of the original substance, are mandatory for a starting point of this procedure. Potentization here appears to embody a procedure that relates matter to mind.

2. No common donor–acceptor-mechanism is known to be responsible for the effects of potencies. Treatment appears to embody a procedure that relates the ‘mind of matter’ to the ‘mind of illness’. The latter of course itself is strongly related to biological matter and is often looked upon as a relationship belonging to psychosomatics.

Are these correlations better described by interaction mechanisms that are not linked to particles? A possible alternative is non-local correlations, known from specific effects in quantum physics. Roughly speaking these correlations have the following characteristic:

1. Non-local correlations between systems or entities represent a real simultaneous behaviour of the correlation partners because no interacting particles (which have a finite speed and therefore cause a time delay) are necessary for interaction.

2. Non-local correlations are not able to interchange matter but only non-material information.

3. Non-local correlations are, in principle, independent of spatial distances.

How non-locality arose

Although Einstein was one of the founders of quantum physics, he did not accept quantum mechanics as to be a complete description of the phenomena of the micro world. He explained the reason for this attitude in a paper which he published with Podolsky and Rosen in 1935. In this famous paper, the three physicists described a thought experiment in which two physical quantities have simultaneous reality.10 For Einstein, this was a counter example for the completeness of quantum mechanics as a description of nature and for the rest of his life he did not change this attitude. He was not willing to accept counter-intuitive features in the description of nature. Schrödinger later on called this counter-intuitive property of quantum systems ‘entanglement’. Only three decades later, John Bell11 gave a theory-based criterion by which it was possible to decide whether a system is a quantum system or not. This criterion was applied in 1982 by Aspect and co-workers to an experimental arrangement in which they showed, for the first time, that entangled states can occur in quantum systems.12 Since then many properties of systems in micro-physics have been demonstrated in experimental arrangements based on entanglement.[5], [6] and [7] All have one thing in common: ‘Entanglement in quantum systems’.

What is entanglement?

Entanglement is a highly counter-intuitive quality of quantum systems. The fact that entanglement is irrelevant to Newtonian physics does not justify the assumption that quantum physics is the only field where entanglement occurs. At least theoretically, entanglement can occur in any system that fulfils a certain set of axioms. Entanglement comes in various guises and it is not easy for non-specialists to see whether a phenomenon belongs to the category of entangled systems or not. For our purposes, it should suffice to get a clue what entanglement is, without too much technical fuss. Readers who are interested in a more precise explanation are referred to Appendix B.

As an example let us imagine a secluded island exclusively inhabited by females. Being asked what human beings are, the inhabitants of this island would most probably point their fingers at themselves. Similarly, the inhabitants of another island exclusively inhabited by males would identify human beings with males. For the rest of the world, human beings are females as well as males. This is a description of a factual connection, where a generic quality in a system has a different meaning in its subsystems. Furthermore, if we look at pairs of human beings there might be couples among them in the rest of the world, in total contradiction to the local meaning in the two islands.

A generalization of this example leads to the following. Let p1 be a particle in a system A and let p2 be another particle in a system B. System A and system B are assumed to be disjoined, ie have no common points/particles. System A rules the behaviour of particle p1 and system B does the same for particle p2 (see Figure 2).


Display Full Size version of this image (18K)

Figure 2. Schema of two entangled systems A and B. p1 and p2 are assumed to be correlated. Seen from (A+B) correlation can be observed. Seen from A or B only local observations are possible.

It might be that states of the totality of the two systems occur which cannot be recognized in system A or in system B alone, but are exclusively linked to the recognition of (A+B) as a third generic system. In the above example as well as in the following generalization constellations, in which global observations are not compatible with local ones, are possible. This is the idea behind entanglement.

Weakening the axioms of quantum mechanics

Quantum mechanics deals with states zi and observables P, Q of quantum systems. Examples of observables are momentum, angular momentum, etc. Observables are thought to act as maps on the set of states. So, an observable P maps a state z1 into another state z2. Onto z2 a second observable Q may be applied resulting in a state z3. Unlike in classical mechanics in quantum mechanics one does not always have P(W(z))=Q(P(z)) or equivalently:

Pring operatorQ-Qring operatorP≠0,

where ‘ring operator’ is to be interpreted as ‘apply to’, where ‘0’ on the right-hand side of this inequality denotes the ‘zero-operator’ and where states ‘z’ have been omitted. Such a relation is known as a ‘commutation-relation’ of the two observables. Using states and observables as well as their relation to each other, quantum mechanics can be described as an algebraic system whose behaviour is ruled by a set of axioms that reflect the physical properties.In 2002, Atmanspacher et al. published13 the idea that weakening the axioms of quantum theory (weak quantum theory, WQT) could lead to theories that are no longer quantum systems or even physical systems at all, but which still have the property of possible entanglement. To be more precise, Atmanspacher et al. considered systems that comply with the following conditions (see also14):

1. Systems are any part of reality.

2. Systems are assumed to have the capacity to reside in different states. The set of states is not assumed to have the structure of the above-mentioned abstract space.

3. Observables are features of a system which can be investigated. They map states into states.

4. The composition Pring operatorQ of two observables is also an observable. P and Q are called compatible if they commute (ie Pring operatorQ-Qring operatorP=0).

5. To every observable P there is a set of different (possible) outcomes.

6. There are special observables (propositions) whose possible outcomes are either ‘yes’ or ‘no’. They follow the laws of ordinary proposition logic and have specific spectral properties (omitted here).

Within these conditions entanglement arises if global observables P pertaining to all of a system are not compatible to local observables Q pertaining to parts of the system (iePring operatorQ-Qring operatorP≠0).

WQT and homeopathy

Since WQT systems are not necessarily quantum systems, WQT could be a tool to develop models for phenomena which are not quantum but have features which resemble entanglement, for instance, homeopathy. Several authors therefore have applied WQT to the homeopathic phenomenon. Walach, one of the co-authors of the original WQT paper,15 presented a model in which the two semiotic processes ‘substance and potency’ as well as ‘drug picture and symptoms of the patient’ are assumed to be entangled by the law of similars. Milgrom has sketched a model for the homeopathic phenomenon in which the three pairs ‘Patient and practitioner’, ‘patient and remedy’ as well as ‘practitioner and remedy’ are assumed to be entangled in pairs.16 In a metaphorical way he derives, in succeeding papers, from this entanglement triangle an astonishing variety of principles of homeopathy.

Both models presuppose the validity of WQT for the specific situation in homeopathy and Milgrom, at least, deduces implications which reflect the way homeopaths think. In terms of logic, the approach of these two models is called the sufficiency part of a proof. The necessity part would be the proof that the assumptions which underlie homeopathy such as the potentization, the law of similars, etc., fit the preconditions of WQT.

I have tackled the TAI problem in a previous paper.17 This is where the SBM (see Appendix A) becomes relevant as a thought model, because it characterizes homeopathic potencies as a real physical system in which an unknown inner correlation is sought. In essence, paper17 showed that sets {Ji1,…,im·σi1,…,im·σi1,…,im} of spin-like states, where indices i1,…,im vary over permutations, fit the axioms of WQT for an arbitrary big system BN in the SBM. The sets {Ji1,…,im·σi1,…,im·σi1,…,im} are a generalization of couplings (Jik·σi·σk) of two spins, in NMR-theory, for instance. The generalization strongly suggests to investigate the possibility of global couplings instead of pair-to-pair couplings.

In summary, a number of arguments exist for non-locality being the general principle underlying the NAIUD. Quantum mechanics, however, cannot be considered, without further investigations, the theoretical frame for the NAIUD. The paradigm is rather non-locality. Quantum physics is merely the scientific discipline where non-locality has proven to occur in reality. Figure 3 gives a schematic classification of phenomena which can be treated within quantum mechanics, and those which have less structure in the set of their states and therefore need another theoretical environment, WQT. Questions concerning the NAIUD might even go beyond WQT.


Display Full Size version of this image (10K)

Figure 3. (I) The set of phenomena understood by quantum mechanics (essentially quantum physics); (II) the set of phenomena possibly understood by weak quantum theory (ie quantum physics and beyond); and (III) the set of phenomena belonging to homeopathy, possibly not a proper subset of II. Although quantum mechanics is an excellent paradigm for entanglement occurring in nature, quantum mechanics itself is not the frame in which NAIUD can be described.

Entanglement and information in quantum physics and beyond

It is the purpose of this section to explain the considerable difficulties one should be aware of when applying WQT instead of normal quantum mechanics to systems in nature.

This will be exemplified by the difficulties which arise when the attempt is made to translate ‘informational content’ (=entropy) in a quantum system to a system which is not quantum but which can be investigated by WQT. For formally correct representations of the factual connections given here, the reader is referred, for instance, to.6

The key concept of classical information theory is that of Shannon entropy. According to this concept, the entropy of a random variable A quantifies how much information we gain, on average, when we learn the value of A. Conversely, the entropy of A measures the amount of uncertainty about A before we learn its value. Thus, on the one hand, entropy measures the uncertainty associated with a classical probability distribution. On the other hand, in quantum ensembles density operators ρ, which represent the statistics of ensembles of different molecules in different states, formally replace probability distributions.

It was John von Neumann’s brilliant insight that in quantum mechanics the entropy S(ρ) of ρ can be expressed by the formula

Click to view the MathML source

where λx are the eigenvalues of the density operator ρ. If entanglement between two subsystems of a quantum system occurs and if one considers the density operators of these subsystems separately it can be shown that the von Neumann entropy of one of these reduced density operators is a measure of the degree of entanglement. This measure has an upper bound log(s), where s (the Schmidt-number) is the dimensionality of an abstract space in which these states ‘live’. Clearly, the bigger the s, the more the particles or states entangled. Applied to an arbitrary box BN of the SBM this suggests that the bigger the box BN is, the larger s has to be chosen and therefore the larger the measure of the amount of information.These considerations, however, presuppose entanglement of those particles being directly concerned. If we turn to a situation where WQT has to be applied instead of quantum mechanics, many of the basic constituents are no longer present or at least no longer adequately defined. For instance, if the set of states is structured so poorly then the above formula for von Neumann entropy makes no sense.

Discussion

The principle of non-local behaviour of systems in nature, first investigated in the context of the counter-intuitive phenomena of quantum physics, is not necessarily restricted to physics at the micro scale. This is the essence of WQT. Roughly speaking WQT shows that in every system where local and global observables do not commute with each other non-local behaviour is possible. For some authors, WQT was the reason for using non-locality to characterize the nature of the active ingredient of ultramolecular dilutions. Some models have simply drawn consequences from such a possible generalized non-locality, another looks at the real potentization procedure, asking what non-locality might contribute to an active ingredient. But WQT is not known to be powerful enough to describe the NAIUD entirely.

So the question arises, why considered WQT in such detail in connection with homeopathy? The answer is simple. With WQT, for the first time, special emphasis is placed quantitatively on entanglement as an idea. Moreover, WQT has shown to be a powerful tool for the characterization of the physics of the class of mathematical problems which arise when the NAIUD is to be described.

It is a great temptation to use WQT as a special way of describing the laws of quantum physics. People who do so tend to ignore the restraints given of WQT and use it as a theory applicable to everything, including the NAIUD. This is certainly not the right way to describe the NAIUD. An attempt to characterize the informational content of a system to be investigated by WQT, shows that it is not easy to generalize the concept in quantum mechanics to WQT or beyond.

Of course, all these considerations do concern the NAIUD in modelling situations. The question is, why do such work instead of looking for the TAI in experiments? The answer is that model building is a method of finding a way of thinking which allows us to understand a set of phenomena in a wider context. In contrast, experimental work tends to reductionism. I hope that both tendencies will ultimately meet.

Acknowledgement

This paper was partially done within the project ‘Modelling and simulating the therapeutically active ingredient of homeopathic potencies’ which was supported by the Carstens-Foundation.

References

1 Fröhlich H, Kremer F (eds). Coherent Excitations in Biological Systems. Berlin, Heidelberg, New York: Springer, 1983.

2 O. Weingärtner, Homöopathische Potenzen, Springer, Berlin, Heidelberg, New York (1992).

3 O. Weingärtner, Kernresonanz-Spektroskopie in der Homöopathieforschung, KVC-Verlag, Essen (2002).

4 J.L. Demangeat, P. Gries and B. Poitevin et al., Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica–lactose prepared in glass material for pharmaceutical use, Appl Magn Reson 26 (2004), pp. 465–481. View Record in Scopus | Cited By in Scopus

5 O. Weingärtner, Über die wissenschaftliche Bearbeitbarkeit der Identifikation eines ‘arzneilichen Gehalts’ von Hochpotenzen, Forsch Komplementärmed Klass Naturheilk 9 (2002), pp. 229–233. View Record in Scopus | Cited By in Scopus

6 M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000).

7 C.P. Williams and S.H. Clearwater, Explorations in Quantum Computing, Springer, New York (1998).

8 R. Sheldrake, The Presence of the Past, Times Book, New York (1988).

9 J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, McGraw-Hill Book Company, New York (1965).

10 A. Einstein, B. Podolsky and N. Rosen, Can quantum–mechanical description of physical reality be considered complete?, Phys Rev 47 (1935), pp. 777–780. Full Text via CrossRef

11 J.S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1 (1964), pp. 195–200.

12 A. Aspect, P. Grangier and G. Roger, Experimental realization of Einstein–Podolsky–Rosen–Bohm–Gedanken experiment: a new violation of Bell’s inequalities, Phys Rev Lett 48 (1982), pp. 91–94. Full Text via CrossRef

13 H. Atmanspacher, H. Römer and H. Walach, Weak quantum theory: complementarity and entanglement in physics and beyond, Found Phys 32 (2002), pp. 379–406. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

14 Römer H. Weak Quantum Theory and the Emergence of Time, 2004, arXiv:quant-ph/0402011 v1, 2 February 2004.

15 H. Walach, Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory, Forsch Komplementärmed Klass Naturheilk 10 (2003), pp. 192–200. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

16 L. Milgrom, Patient-practitioner-remedy (PPR) entanglement. Part 1: a qualitative, non-local metaphor for homeopathy based on quantum theory, Homeopathy 91 (2002), pp. 239–248. Abstract | Abstract + References | PDF (240 K) | View Record in Scopus | Cited By in Scopus

17 O. Weingärtner, What is the therapeutically active ingredient of homeopathic potencies?, Homeopathy 92 (2003), pp. 145–151. SummaryPlus | Full Text + Links | PDF (156 K) | View Record in Scopus | Cited By in Scopus

Appendix A. The sequential box model (SBM)

Imagine a certain volume of mother tincture is present in a box B0. Then imagine the contents of B0 are poured into another box B1, 10 times bigger than B0 and already 9/10th full of solvent. Imagine then B1 being vigorously shaken as in the preparation procedure of homeopathic potencies. Imagine then the whole content of B1 being poured into another box B2, 10 times bigger than B1 and again 9/10th full of solvent.

This procedure can be continued to an arbitrary box BN and it is clear that:

1. In every Box BN the whole volume of mother tincture is present, ie the problem of high potencies can be, at least in a thought experiment, treated physically.

2. If one attempted to conduct this experiment in reality the procedure would come to an end very soon because of the unrealizable dimensions of the boxes.

3. The higher N grows the less probable is the occurrence of a molecule in a random sample taken out of BN. This means that in BN an additional property has to be present which carries the information of B0. This property has to be non-local.

Appendix B. Entanglement

Mathematicians represent every point in the three-dimensional space of our experience as a sum of multiples of vectors of unit lengths in the x-, y- and z-axes. In the same way, they often represent objects in abstract spaces as sums of multiples of basic elements of these spaces. A direct application of this to quantum physics leads to the following.[6] and [7]

The states of quantum systems are mathematically represented by elements (points in) of an abstract Hilbert-space H. If points in this space are denoted by ψ and if the basic elements of H are denoted by phii (i=1,2,…), representations of states look like

Click to view the MathML source

This is commonly known as the principle of superposition in quantum mechanics, ie a wave function ψ is the superposition of multiples ai of basis ‘waves’ phii. In case of two particles forming two different systems we have the two representations:

Click to view the MathML source

Click to view the MathML source

where the numberings (1) and (2) are used to distinguish between the two. For the sake of clarity, we also index the Hilbert-spaces belonging to each of these representations (and get H1 and H2, respectively) although they are usually identical.The crucial point now is the consideration of a system consisting of the two particles as a whole. In this case, it is necessary to construct another Hilbert-space H=H1circle times operatorH2 out of H1 and H2 in such a way that this new system ‘lives’ in H1 and in H2 at the same time. In order to achieve this, a so-called tensor-product H1circle times operatorH2 is formed. This is a new Hilbert-space whose points have the form

Click to view the MathML source

where Φi,j denote basis elements in H=H1circle times operatorH2 and ci,j their multiples. Entangled states are those (ψ(1)ψ(2)) for which the multiples ci,j cannot be written as

ci,j=aibj,

with ai and bj being the multiples from above and independent from each other.Remarks

1. The above relation between states can be interpreted as the possible arising of additional qualities when two single systems are looked upon as a whole.

2. The set of entangled states in most of quantum systems is not empty. For many systems, the subset of possibly entangled states is much bigger than the non-entangled.

3. The above characterization is not restricted to pairs of particles.

4. States (ψ(1)ψ(2)) in H=H1circle times operatorH2 which cannot be split into products of pure states in H1 and H2, respectively, might be imagined as the pure states of the composite system.

5. The description of entanglement in quantum mechanics, which is a counter-intuitive, strongly depends on a mathematical apparatus with a rich structure.


Corresponding Author Contact InformationCorrespondence: Otto Weingärtner, Department of Basic Research, Dr. Reckeweg & Co. GmbH, Berliner Ring 32, D 64625 Bensheim, Germany.



Homeopathy
Volume 96, Issue 3, July 2007, Pages 220-226
The Memory of Water

Journal Club – “The history of the Memory of Water”

January 1st, 2000 by Ben Goldacre in journal club | 2 Comments »

This is part of the Homeopathy journal club described here:

www.badscience.net/?p=490

doi:10.1016/j.homp.2007.03.006    How to Cite or Link Using DOI (Opens New Window)
Copyright © 2007 Elsevier Ltd All rights reserved. The history of the Memory of Water

Yolène ThomasCorresponding Author Contact Information, a, E-mail The Corresponding Author
aInstitut Andre Lwoff IFR89, 7, rue Guy Moquet-BP8, 94 801 Villejuif Cedex, France
Received 26 March 2007;  accepted 27 March 2007.  Available online 31 July 2007.

‘Homeopathic dilutions’ and ‘Memory of Water’ are two expressions capable of turning a peaceful and intelligent person into a violently irrational one,’ as Michel Schiff points out in the introduction of his book ‘The Memory of Water’. The idea of the memory of water arose in the laboratory of Jacques Benveniste in the late 1980s and 20 years later the debate is still ongoing even though an increasing number of scientists report they have confirmed the basic results.

This paper, first provides a brief historical overview of the context of the high dilution experiments then moves on to digital biology. One working hypothesis was that molecules can communicate with each other, exchanging information without being in physical contact and that at least some biological functions can be mimicked by certain energetic modes characteristics of a given molecule. These considerations informed exploratory research which led to the speculation that biological signaling might be transmissible by electromagnetic means. Around 1991, the transfer of specific molecular signals to sensitive biological systems was achieved using an amplifier and electromagnetic coils. In 1995, a more sophisticated procedure was established to record, digitize and replay these signals using a multimedia computer. From a physical and chemical perspective, these experiments pose a riddle, since it is not clear what mechanism can sustain such ‘water memory’ of the exposure to molecular signals. From a biological perspective, the puzzle is what nature of imprinted effect (water structure) can impact biological function. Also, the far-reaching implications of these observations require numerous and repeated experimental tests to rule out overlooked artifacts. Perhaps more important is to have the experiments repeated by other groups and with other models to explore the generality of the effect. In conclusion, we will present some of this emerging independent experimental work.

Keywords: high dilution; memory; water; molecular signal; audio-frequency oscillator; computer-recorded signals

Article Outline

Historical overview: the early history of high dilution experiments
Exploring the physical nature of the biological signal
From high dilution to digital biology
The present situation
Acknowledgements
References


Historical overview: the early history of high dilution experiments

Presenting a brief history of what is known as the ‘Memory of Water’ is not an easy task mainly because one of the main actors, Jacques Benveniste, is no longer with us (Figure 1). There are always many controversies around cutting edge science, and especially with those whose lives have been spent pursuing unorthodox trails.


Display Full Size version of this image (55K)

Figure 1. Jacques Benveniste 1935–2004.

I first met Benveniste during a FASEB meeting in Atlanta in 1981 and joined his laboratory a few years later to set up my own Immunology team. I had the good fortune of being able to collaborate with him for over 16 years. At that time, he was at the top of his fame and gained an international reputation as a specialist on the mechanisms of allergies and inflammation with his discovery of the ‘Platelet Activating Factor’ (paf-acether) in 1970.[1] and [2] Throughout his long career, working both in the US and in France, he was responsible for the development of new ways of approaching inflammation including the patenting by the French National Institute of Health and Medical Research (INSERM) of his innovative allergy test using blood cells called basophils (FR-patent-7,520,273). Jacques’ research into allergies took him deep into the mechanisms which create such responses: understanding how the smallest amount of a substance affects the organism. The life and work of Jacques Benveniste was not only written in water.

In the early 1980s, while heading up the unit INSERM 200, Jacques took a new member onto his staff, a young medical doctor, Bernard Poitevin, whose side-interest was homeopathy. ‘He asked me if he could try my basophil degranulation test on some homeopathic preparations’, Jacques recalled, ‘and I remember distinctly saying “OK, but all you will be testing is water”.’ Thus, Jacques expressed his skepticism but accepted the proposal.

After 5 years of research they empirically observed that highly dilute (i.e., in the absence of any physical molecule) biological agents nevertheless triggered the relevant biological systems. Intrigued but cautious, Jacques was a man who adhered to the facts. He ordered a two-year long series of retests, but the same results kept recurring. Finally, Poitevin and Benveniste submitted two papers which were published in peer review journals.[3] and [4] Here, the work was treated as conventional research like many other manuscripts from peer-reviewed journals which can be found in the scientific literature on the effect of high dilutions (HD) (review in[5] and [6]).

Following accepted scientific practice, Jacques then asked other laboratories to try to replicate the findings. In 1988, scientists from six laboratories in four countries (France, Canada, Israel and Italy) co-authored an article showing that highly diluted antibodies could cause basophil degranulation. This was established under stringent experimental conditions such as blind double-coded procedures. Further, the experimental dilution (anti-IgE) and the control one (anti-IgG) were prepared in exactly the same manner, with the same number of dilution and agitation sequences. The article was submitted to Nature.7 Nature‘s referees could not fault Benveniste’s experimental procedures but could not comprehend his results. How can a biological system respond to an antigen when no molecules of it can be detected in the solution? It goes against the accepted ‘lock-and-key’ principle, which states that molecules must be in contact and structurally match before information can be exchanged. In the paper, Jacques suggested that specific information must have been transmitted during the dilution/shaking process via some molecular organization occurring in the water.

Finally, the editor of the journal, John Maddox agreed to publication, on condition that a ‘committee’ could verify Benveniste’s laboratory procedures. In July 1988, after two weeks after publication, instead of sending a committee of scientific experts, Maddox recruited—James Randi, a magician, and Walter Stewart, a fraud investigator. The three of them spent 5 days in the laboratory. Well, you all know what followed. Nature‘s attempted debunking exercise failed to find any evidence of fraud. Nevertheless, they concluded that Benveniste had failed to replicate his original study.8 This marked the beginning of the ‘Water Memory’ war, which placed him in a realm of ‘scientific heresy’. As Michel Schiff later remarked in his book: ‘INSERM scientists had performed 200 experiments (including some fifty blind experiments) before being challenged by the fraud squad. The failure to reproduce8 only concerned two negative experiments’.9 Benveniste replied to Nature10 and reacted with anger, ‘not to the fact that an inquiry had been carried out, for I had been willing that this be done… but to the way in which it had been conducted and to the implication that my team’s honesty and scientific competence were questioned. The only way definitely to establish conflicting results is to reproduce them. It may be that we are all wrong in good faith. This is not crime but science…’.

As a consequence of the controversy that ensued, Jacques became increasingly isolated. Nonetheless the team repeated the work on a larger scale, entirely designed and run under the close scrutiny of independent statistical experts, and confirmed the initial findings in Nature.11 These further experiments have been coolly received or ignored by most scientists at least partly because, given Jacques’ now-acrimonious relationship with Nature, they were published in a less renowned journal.

To date, since the Nature publication in 1988, several laboratories have attempted to repeat Benveniste’s original basophil experiments. Most importantly, a consortium of four independent research laboratories in France, Italy, Belgium, and Holland, led by M. Roberfroid at Belgium’s Catholic University of Louvain in Brussels, confirmed that HD of histamine modulate basophil activity. An independent statistician analyzed the resulting data. Histamine solutions and controls were prepared independently in three different laboratories. Basophil activation was assessed by flow-cytometric measurement of CD63 expression (expressed on cytoplasmic granules and on the external membrane after activation). All experiments were randomized and carried out under blind conditions. Not much room, therefore, for fraud or wishful thinking. Three of the four labs involved in the trial reported statistically significant inhibition of the basophil degranulation reaction by HD of histamine as compared to the controls. The fourth lab gave a result that was almost significant. Thus, the total result over all four labs was positive for histamine HD solutions.[12] and [13] ‘We are,’ the authors say in their paper, ‘unable to explain our findings and are reporting them to encourage others to investigate this phenomenon’.

Different attempts have been made to substantiate the claim that serial dilution procedures are associated with changes in the water’s physical properties ([14] and [15]and see Louis Rey contribution in this issue pages 170–174). Yet, the challenge of understanding the mechanisms of how HDs work, and the role of water in them, is a difficult one to say the least. Several possible scenarios have been suggested. One proposed by Giuliano Preparata and Emilio Del Giudice, is that long range coherent domains between water molecules (quantum electrodynamics, QED) gives high dilution laser-like properties.[16] and [17] When the field matches the kinetic of the reaction, the latter becomes functional as the optimal field strength as for a radio receiver. It was to a scientific meeting in Bermuda that took place a few months before the Nature ‘affair’ erupted that these two physicists working at Milan University brought the theoretical basis for the memory of water. Another scenario predicts changes in the water structure by forming more or less permanent clusters.18 Other hypotheses will be discussed in this issue. High dilution experiments and memory water theory may be related, and may provide an explanation for the observed phenomena. As M. Schiff points out, only time and further research will tell, provided that one gives the phenomena a chance.9

Exploring the physical nature of the biological signal

Despite the difficulties after the Nature fracas, Jacques and his now-depleted research team continued to investigate the nature of the biological activity in high dilutions and aimed at understanding the physical nature of the biological signal. In his Nature paper, Jacques reasoned that the effect of dilution and agitation pointed to transmission of biological information via some molecular organization going on in the water. The importance of agitation in the transmission of information was explored by pipetting dilutions up and down ten times and comparing with the usual 10-s vortexing. Although the two processes resulted in the same dilution, basophil degranulation did not occur at HD after pipetting. So transmission of the information depended on vigorous agitation, possibly inducing a submolecular organization of water or closely related liquids (ethanol and propanol could also support the phenomenon). In contrast, dilutions in dimethylsulphoxide did not transmit the information from one dilution to the other. In addition, heating, freeze-thawing or ultrasonication suppressed the activity of highly diluted solutions, but not the activity of several active compounds at high concentrations. A striking feature was that molecules reacted to heat according to their distinctive heat sensitivity, whereas all highly diluted solutions ceased to be active between 70 and 80 °C. This result suggested a common mechanism operating in HDs, independent of the nature of the original molecule. In addition, in 1991 and in collaboration with an external team of physicists (Lab. Magnetisme C.N.R.S.-Meudon Bellevue, France), it was shown in twenty four blind experiments that the activity of highly dilute agonists was abolished by exposure to a magnetic field (50 Hz, 15×10−3 T, 15 min) which had no comparable effect on the genuine molecules. Moreover, it is worth pointing out that a growing number of observations suggest the susceptibility of biological systems or water to electric and low-frequency electromagnetic fields.[19], [20] and [21] In addition, what is suggested from the literature is a possible role of electromagnetic fields regarding informational process in cell communication.[22], [23] and [24]

At this stage, Jacques hypothesized that transmission of this ordering principle was electromagnetic in nature and move on to the idea that molecules could communicate via specific electromagnetic waves. If so, what molecule vibration modes are efficient and how can these signals be used to mimic some of the biological functions of a molecule without its physical presence?

From high dilution to digital biology

It was at the beginning of the nineties that a homeopathic physician, E. Attias convinced Jacques to try out an electrical device that he claimed transmitted chemical information. After a few positive trials with this machine, Jacques had another one built, which was used for later experiments. This second device was essentially a standard audio amplifier that, when connected to another coil, behaves as an audio-frequency oscillator. Between 1992 and 1996, we performed a number of experiments showing that we could transfer, in real time, molecular signals indirectly to water or directly to cells. Briefly, cells were placed in a 37 °C humidified incubator on one coil attached to the oscillator, while an agonist (or vehicle as control) was placed on another coil at room temperature. Here, the transfer was not a two step-process, as when water acts as an intermediary recipient of the molecular signal. In one such exploration, we showed that molecular signals associated with a common phorbol ester (phorbol-myristate-acetate) could be transmitted by physical means directly to human neutrophils to modulate reactive oxygen metabolite production. In 1996, I submitted an article about these experiments to several prestigious journals. The article was flatly rejected each time, on the grounds that we could not explain the underlying mechanism, in spite of the referees’ general opinions that our work was ‘state-of-the-art’ and was ‘provocative and intriguing and we have gone to great lengths to try to eliminate any biological variables that could bias our results.’ It was finally published in 2000.25 Appended to this article were two affidavits, one from a French laboratory (F. Russo Marie, INSERM U332, Paris, France) testifying that they supervised and blinded the experiments we did in this laboratory; the other from an US laboratory (W. Hsueh, Department of Pathology, Northwestern University, Chicago) testifying that they did some preliminary experiments similar to ours, without any physical participation on our part, and detected the same effect.

Because of the material properties of the oscillator and the limitations of the equipment used, it is most likely that the signal is carried by frequencies in the low kilohertz range.26 These considerations led to the establishment in 1995 of a more sophisticated procedure for the recording and retransmission of the molecular signals. DigiBio, a company that Jacques had set up in 1997 to finance his research, obtained in 2003 an approval for one of his French patents by the US Patent Office (6,541,978: method, system and device for producing signals from a substance biological and/or chemical activity). The characteristics of the equipment are described in Figure 2 and in.26 Briefly, the process is to first capture the electromagnetic signal from a biologically active solution using a transducer and a computer with a sound card. The digital signals are stored (Microsoft sound files *.wav). The signal is then amplified and ‘played back’, usually for 10 min, from the computer sound card to cells or organs placed within a conventional solenoid coil. The digitally recorded signals can also be played back into untreated water, which thereafter will act as if the actual substance was physically present.


Display Full Size version of this image (29K)

Figure 2. Schematic drawing of the computer-recorded signals: capture, storage and replay:

Shielded cylindrical chamber: Composed of three superposed layers: copper, soft iron, permalloy, made from sheets 1 mm thick. The chamber has an internal diameter of 65 mm, and a height of 100 mm. A shielded lid closes the chamber.

Transducers: Coil of copper wire, impedance 300 Ω, internal diameter 6 mm, external diameter 16 mm, length 6 mm, usually used for telephone receivers.

• Multimedia computer (Windows OS) equipped with a sound card (5–44 KHz in linear steps), (Sound Blaster AWE 64, CREATIVE LABS).

• HiFi amplifier 2×100 watts with an ‘in’ socket, an ‘out’ socket to the speakers, a power switch and a potentiometer. Pass band from 10 Hz to 20 kHz, gain 1–10, input sensitivity +/− V.

Solenoid coil: Conventionally wound copper wire coil with the following characteristics: internal diameter 50 mm, length 80 mm, R=3.6 Ω, three layers of 112 tums of copper wire, field on the axis to the centre 44×10−4 T/A, and on the edge 25×10−4 T/A.

All links consist of shielded cable. All the apparatus is earthed.

From 1995 to the present, several biologically active molecules (eg histamine, acetylcholine, caffeine, PMA, Melagatran… even homeopathic medicines such as Arnica montana) have been recorded, digitized and replayed to biological systems sensitive to the original molecular substance. Several biological models were used. The first one was a commonly used system by pharmacologists, called the Langendorff preparation. By injecting different vasoactive substances into the coronary artery of an isolated, perfused guinea pig heart and measuring the coronary flow, you can quantify the vasoconstricting or vasodilating effect of the agent. In typical experiments, the signal of acetylcholine (or water as control), a classical vasodilating molecule was recorded and digitized. The signal was then amplified and ‘played’ back onto water. The signal-carrying water is then injected into the isolated heart, and consequently the coronary flow increased. Interestingly, atropine, an acetylcholine inhibitor, inhibited both the effects of the molecular acetylcholine as well as the digital signal of acetylcholine. Of note, the order of the conditions and their repetitions was always randomized and blinded. Other models include: human neutrophil activation; detection of the recorded signal of bacteria (E. Coli and Streptococcus) by playing them to a biological system specific to the bacterial signal and; the inhibition of fibrinogen coagulation by a Direct Thrombin Inhibitor. Further details of three of these salient biological models have been previously described.26 Together, these results suggested that at least some biologically active molecules emit signals in the form of electromagnetic radiation at a frequency of less than 44 kHz that can be recorded, digitized and replayed directly to cells or to water, in a manner that seems specific to the source molecules.26

Assuming that we give credence to the phenomena described, one question naturally springs to mind: what do molecule vibration modes sound like? Can measurable signals been identified in the form of low frequency spectral components? Didier Guillonnet, an engineer in computer science, and at the time, a close collaborator of Jacques Benveniste admitted, ‘When we record a molecule such as caffeine, for example, we should get a spectrum, but it seems more like noise. We are only recording and replaying; at the moment we cannot recognize a pattern although the biological systems do.’ Jacques called this matching of broadcast with reception ‘co-resonance,’ and said it works like a radio set.

Among the various theoretical problems associated with such a signal, two appear particularly relevant. First, how is such information using water as an intermediary detected amongst much electromagnetic noise? In fact, it has been suggested that stochastic resonance is an important mechanism by which very weak signals can be amplified and emerge from random noise.27 Second, the limitations of the equipment used here, suggest that the signal is carried by frequencies in the low kilohertz range, many orders of magnitude below those generally associated with molecular spectra (located in the infrared range). However, molecules may also produce much lower ‘beat’ frequencies (Hz to kHz) specific for every different molecule. The ‘beat frequency’ phenomenon may explain this discrepancy, since a detector, for instance a receptor, will ‘see’ the sum of the components of a given complex wave.28 Clearly, more experimental and theoretical work is needed in order to unveil the physical basis of the transfer (and storage?) of specific biological information either between interacting molecules or via an electronic device.

Replicability: Although since the very beginning we have placed a great deal of emphasis on carrying out our work under the highest standards of methodology and that great effort has been made to isolate it from environmental artifacts, attempts to replicate these data in other laboratories yielded mixed results. For instance, in 1999, Brian Josephson, Nobel Laureate for Physics in 1973 invited Benveniste to the Cavendish Laboratory in Cambridge. He said, ‘We invited him to learn more about the research which seems both scientifically interesting and potentially of considerable practical importance. Jacques definitely recognized there was a problem with reproducing the effect. The situation seemed to be that in some circumstances you had reproduction and in others you didn’t; but the overall results were highly significant.’ We then realized the difficulty in ‘exporting’ a method, which is very far from conventional biology. There are many key variables that might be involved like, water purification, the container shape and material being used, the purity of chemicals, atmospheric conditions…. Only if these underlying variables are known could the experiments be reproducible. When the transfer is a two-step process using water as an intermediary support for transmitted molecular signals, it takes even more stringent conditions for the experiments to be repeatable. The digital signal is replayed onto the water, which may take or not take the signal depending, for instance, upon the local electromagnetic conditions. In this regard, it is interesting to note that the ‘informed water’ as in the HD experiments, loses its activity after heating or being exposed to magnetic fields.

More surprising and mysterious was the fact that in some cases certain individuals (not claiming special talents) consistently get digital effects and other individuals get no effects or perhaps block those effects (particularly when handling a tube containing informed water). The inhibition of fibrinogen–thrombin coagulation by a digitized thrombin inhibitor is a model particularly sensitive to experimenter effects and therefore may account for the difficulty in consistently replicating this experimental system. Despite the precautions taken to shield the information transfer equipment from magnetic or electromagnetic pollution, very little concern has been given to possible subtle human operator effects.29 We dealt with this problem in some of our own studies and also in the course of one independent replication.30

The present situation

Now that Jacques Benveniste is no longer with us, the future of the ‘digital biology’ is in the hands of those who have been convinced of the reality of the basic phenomena. It is up to them to explore with other models the generality of the effect. Most likely they will succeed if they combine full biological and physical skills to understand the nature of the biological signals.

In this regard, since June 2005, Luc Montagnier, the co-discoverer of HIV, is conducting experiments (detection of the recorded signals of various micro-organisms derived from human pathologies) which, confirm and extend the original finding. In 2006, he set up a company called Nanectis. Perhaps the most impressive emerging data is from a US group located in La Jolla, CA.

In barely four years, they have conducted novel research programs and expanded the original technology into a series of potential industrial applications. Since 2004, they have obtained several US patents (6,724,188; 6,952,652; 6,995,558; 7,081,747) and applied for International Patents (WO 06/015038: system and method for collecting, storing, processing, transmitting and presenting very low amplitude signals; WO 06/073491: system and method for producing chemical or biochemical signals). They can improve the molecular signal recording in particular by using both magnetic and electromagnetic shielding coupled to a superconducting quantum interference device (SQUID). The system records a time-series signal for a compound; the wave form is processed and optimized (selected noise amplitude, power setting…) to identify low-frequency peaks that are characteristic of the molecule being interrogated (Molecular Data Interrogation System, MIDS). The optimized signal is played back for various periods of time to sensitive biological systems. For instance, they describe one interesting model particularly relevant to the specificity of the molecular signal transmission effect. The arabinose-inducible bacterial system with a lac operon is inducible by signals from the L (+) arabinose form but not from the D (−) arabinose inactive isomer or the white noise control. Other systems include digital herbicides and plant growth regulator as well as pharmaceutical compounds such as Taxol ®, a prototype for a class of anticancer drugs. For instance, in a classic in vivo mouse xenograft model, the digital Taxol was assessed by the growth inhibitory potential of a human breast tumor. The results revealed that tumor growth, by day 36, was as statistically significantly inhibited in the group treated with the Taxol signal, as it was in the control group treated with actual molecular Taxol. If these new experimental observations can be validated, we will have added yet another valuable piece to the puzzle.

Although a theoretical explanation of how the memory of water might work must still be explored, the fact that the effective transmission of molecular signals has now been observed by independent teams using different biological systems, provides a strong additional basis to suggest that the phenomena observed by Jacques were not due simply to laboratory artefacts.

Whatever knowledge ongoing and future investigation may bring, the difficult road that Jacques travelled by opposing the automatic acceptance of received ideas, will have contributed to sustaining freedom in scientific research and putting the emphasis back where it belongs, on observable fact.

Acknowledgments

I am grateful to Drs. Isaac Behar and Anita K. Gold for critical comments on the manuscript.

References

1 J. Benveniste, P.M. Henson and C.G. Cochrane, Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor, J Exp Med 136 (1972), pp. 1356–1377. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

2 J. Benveniste, Platelet-activating factor, a new mediator of anaphylaxis and immune complex deposition from rabbit and human basophils, Nature 249 (1974), pp. 581–582. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

3 E. Davenas, B. Poitevin and J. Benveniste, Effect of mouse peritoneal macrophages of orally administered very high dilutions of silica, Eur J Pharmacol 135 (1987), pp. 313–319. Abstract | Abstract + References | PDF (543 K) | View Record in Scopus | Cited By in Scopus

4 B. Poitevin, E. Davenas and J. Benveniste, In vitro immunological degranulation of human basophils is modulated by lung histamine and Apis mellifica, Br J Clin Pharmacol 25 (1988), pp. 439–444. View Record in Scopus | Cited By in Scopus

5 H. Walach, W.B. Jonas, J. Ives, R. van Wijk and O. Weingartner, Research on homeopathy: state of the art, J Altern Complement Med 11 (2005), pp. 813–829. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

6 P. Bellavite, R. Ortolani, F. Pontarollo, V. Piasere, G. Benato and A. Conforti, Immunology and Homeopathy, Evidence-based Complementary Alternative Med 2 (2005), pp. 441–452. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

7 E. Davenas, F. Beauvais and J. Amara et al., Human basophil degranulation triggered by very dilute antiserum against IgE, Nature 333 (1988), pp. 816–818. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

8 J. Maddox, J. Randi and W.W. Stewart, High-dilution’experiments a delusion, Nature 334 (1988), pp. 287–290.

9 Schiff M. The Memory of Water. UK: Ed. Thorsons, 1995.

10 J. Benveniste, Dr Jacques Benveniste replies, Nature 334 (1988), p. 291. Full Text via CrossRef

11 J. Benveniste, E. Davenas, B. Ducot, B. Cornillet, B. Poitevin and A. Spira, L’agitation de solutions hautement diluées n’induit pas d’activité biologique spécifique, CR Acad Sci Paris 312 (1991), pp. 461–466.

12 P. Belon, J. Cumps and M. Ennis et al., Inhibition of human basophil degranulation by successive histamine dilutions: results of a European multi-centre trial, Inflamm Res (Suppl 1) 48 (1999), pp. S17–S18. View Record in Scopus | Cited By in Scopus

13 P. Belon, J. Cumps and M. Ennis et al., Histamine dilutions modulate basophil activation, Inflamm Res 53 (2004), pp. 181–188. View Record in Scopus | Cited By in Scopus

14 Lobyshev VI, Tomkevitch MS. Luminescence study of homeopathic remedies. In: Priezzhev AV, Cote GL (eds). Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, Proceedings of the SPIE, Vol 4263. MAIK “Navka/Interperiodica” (Russia), 2001, pp 1605–7422.

15 V. Elia, S. Baiano, I. Duro, E. Napoli, M. Niccoli and L. Nonatelli, Permanent physico-chemical properties of extremely diluted aqueous solutions of homeopathic medicines, Homeopathy 93 (2004), pp. 144–150. SummaryPlus | Full Text + Links | PDF (154 K) | View Record in Scopus | Cited By in Scopus

16 E. Del Giudice, G. Preparata and G. Vitiello, Water as a free electric dipole laser, Phys Rev Lett 61 (1988), pp. 1085–1088. Full Text via CrossRef

17 G. Preparata, QED Coherence in Matter, World Scientific, Singapore (1995).

18 E.E. Fesenko and A.Y. Gluvstein, Changes in the state of water, induced by radiofrequency electromagnetic fields, FEBS Lett 367 (1995), pp. 53–55. Abstract | Abstract + References | PDF (294 K) | View Record in Scopus | Cited By in Scopus

19 R. Goodman and M. Blank, Initial interactions in electromagnetic field-induced biosynthesis, J Cell Physiol 199 (2004), pp. 359–363.

20 E. Ben Jacob, Y. Aharonov and Y. Shapira, Bacteria harnessing complexity, Biofilms (2004), pp. 239–263.

21 P.h. Vallée, J. Lafait, P. Mentré, M.O. Monod and Y. Thomas, Effects of pulsed low frequency electromagnetic fields on water using photoluminescence spectroscopy: role of bubble/water interface?, J Chem Phys 122 (2005), pp. 114513–114521. Full Text via CrossRef

22 G. Albrecht-Buehler, Rudimentary form of cellular ‘vision’, Proc Natl Acad Sci USA 89 (1992), pp. 8288–8292. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

23 M.W. Trushin, Studies on distant regulation of bacterial growth and light emission, Microbiology 149 (2003), pp. 363–368. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

24 B.W. Ninham and M. Boström, Building bridges between the physical and biological sciences, Cell Mol Biol 51 (2005), pp. 803–813. View Record in Scopus | Cited By in Scopus

25 Y. Thomas, M. Schiff, L. Belkadi, P. Jurgens, L. Kahhak and J. Benveniste, Activation of human neutrophils by electronically transmitted phorbol-myristate acetate, Med Hypotheses 54 (2000), pp. 33–39. Abstract | Abstract + References | PDF (188 K) | View Record in Scopus | Cited By in Scopus

26 Y. Thomas, L. Kahhak and J. Aissa, The physical nature of the biological signal, a puzzling phenomenon: the critical role of Jacques Benveniste. In: G.H. Pollack, I.L. Cameron and D.N. Wheatley, Editors, Water and the Cell, Springer, Dordrecht (2006), pp. 325–340.

27 K. Wiesenfeld and F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS, Nature 373 (1995), pp. 33–36. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

28 C.N. Banwellk, Fundamentals of Molecular Spectroscopy, McGraw-Hill Publ., UK (1983) pp 26–28.

29 B.J. Dunne and R.G. Jahn, Consciousness, information, and living systems, Cell Mol Biol 51 (2005), pp. 703–714. View Record in Scopus | Cited By in Scopus

30 W.B. Jonas, J.A. Ives and F. Rollwagen et al., Can specific biological signals be digitized?, FASEB J 20 (2006), pp. 23–28. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

Corresponding Author Contact InformationCorrespondence: Yolène Thomas, Institut Andre Lwoff IFR89, 7, rue Guy Moquet-BP8, 94 801 Villejuif Cedex, France. Tel.: +33(0) 1 49 58 34 81.



Homeopathy
Volume 96, Issue 3, July 2007, Pages 151-157
The Memory of Water

Journal Club – “Can water possibly have a memory? A sceptical view”

January 1st, 2000 by Ben Goldacre in journal club | 2 Comments »

This is part of the Homeopathy journal club described here:

www.badscience.net/?p=490

doi:10.1016/j.homp.2007.05.001    How to Cite or Link Using DOI (Opens New Window)
Copyright © 2007 Elsevier Ltd All rights reserved. Can water possibly have a memory? A sceptical view

José TeixeiraCorresponding Author Contact Information, a, E-mail The Corresponding Author
aLaboratoire Léon Brillouin (CEA/CNRS), CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
Received 1 May 2007.  Available online 31 July 2007.

Homeopathic medicines are currently used in medical practice, despite controversy about their effectiveness. The preparation method is based on extremely high dilutions of many substances in water, far beyond any detectable level. For this reason, it has been suggested that water could retain a ‘memory’ of substances that have been dissolved in it before the successive dilutions. The paper stresses the fact that this idea is not compatible with our knowledge of pure water. If an explanation on physical grounds is to be found, research must focus in other aspects of the preparation, such as the presence of other molecules and dissolved gases.

Keywords: water structure; water dynamics; aggregation; metastability

Article Outline

Introduction
Pure water and homeopathic drugs
Properties of liquid water
Aqueous solutions
Conclusion
References


Introduction

Homeopathy and homeopathic medicines are widespread and well accepted by many doctors, pharmacists and patients. It is officially recognised by health authorities and agencies authorities and at a political level in many parts of the world. However, they are also criticized and attacked by others. It is not my purpose to participate actively in a complex debate that includes not only scientific aspects but also sociological and economic components. My contribution will address only the arguments relying on the properties of water and only from the physical view. Consequently, at best, it is a physicist’s view of the role played by water in homeopathic solutions.

To clarify this statement, I think that it is useful to remember that medicine is not only a science but also an art. A good doctor takes into account not only the sickness itself but also the patient, his environment and his psychological aspects. As a consequence, the prescription of a medicine fortunately includes a large part of empiricism. The goal is to restore a ‘normal’ state. One must admit that the complete knowledge of all the parameters intervening in a real situation is totally illusory and that this situation is unlikely to change in the foreseeable future. Anyway, even when the active principles and biological receptors are well known and identified, the reactions of different patients are not the same. To circumvent these inherent difficulties the performance of drugs is established via statistical analysis of large numbers of cases with a randomised double-blind methodology which implicitly recognizes the hidden role of components which escape to the normal scientific analysis of ‘exact sciences’.

Modern pharmacological research is based on a detailed knowledge of physical and chemical interactions between drugs and living cells. At the confluence of Biophysics and Chemistry, a more detailed and precise picture of those interactions is steadily emerging. Still, many traditional medications and frequently-prescribed drugs are currently used without such detailed knowledge of their action. For them, it is either difficult or useless to define the exact ‘paths’ from medicine to biology, then to chemistry and physics.

Pure water and homeopathic drugs

Many traditional drugs, as for example those extracted from plants, are extensively used in medicine. In some cases one or more active principles have been identified but even in such cases the exact action is usually not well understood at the level of chemical reactions or physical interactions taking place within living organisms. This situation is very common but has never been a limitation to prescribing drugs that have shown their effectiveness through many years of practical use. Certainly, in other cases, the interactions are known in great detail leading to the synthesis of well-defined drugs with specific and well controlled applications. But we remain far from a comprehensive and detailed knowledge of the action of drugs on living organisms.

Homeopathic drugs fall, at least partially, into the first category. Their use has been validated by real or supposed successes, the frontier of the two being probably irrelevant from the point of view of the patient. But there is an essential difference between traditional or ‘natural’ medicine and homeopathy. The latter is much more recent and based in a quasi philosophical concept (similia similibus curentur) stated by Hahnemann, perhaps by analogy with the contemporary first studies of immunization. With modern science, it should, in due course, be possible to understand the mechanisms of action of natural substances and of homeopathic drugs. For natural substances the search for the active principles has been successful in some cases; in others, it has been simply assumed that they are present but the level of interest of the drug or available resources has not justified further studies.

With homeopathic drugs the situation is very different. Their method of preparation is based essentially on two steps: sequential dilution with ‘succussion’ or ‘dynamisation’ (vigorous turbulent shaking). A molecular view of the matter and a trivial calculation demonstrates that, often it is extremely improbable that even one molecule of the compound present in the original solution persists in a vial of the final medicine. The role of succussion is not obvious, even less the diverse standards of methods of preparation.

Under the pressure of criticism, the natural evolution of researchers interested in finding acceptable scientific justifications of homeopathy has been to go from purely medical concepts of effective therapy to chemistry and finally to fundamental physics. Ultimately, schematically, the answer: if there is ‘only’ water in homeopathic medicines, then the explanation of the therapeutic action must be in pure water, itself!

This intellectual evolution is a paradox. While for many drugs, the action is known at a biological, sometimes at a chemical, but almost never at a physical level (that of the structure and energies defined with atomic resolution); for homeopathy, the discussion jumped directly into this microscopic sub-molecular physics world. The mixture of the precise methodology characterizing research in physics and procedures deriving from pharmacology in research in homeopathy is striking. For example, several measurements of physical properties of diluted solutions have been done double-blinded. An extreme and provocative hypothesis is that water can retain a ‘memory’ of substances previously dissolved in it.1

A critical analysis of several publications shows that several issues remain open to question. Schematically, one can distinguish the following:

(1) How different from pure water are highly diluted solutions? In other words, is the simple calculation of the number of molecules of the ‘active principle’ per unit volume of the solution sufficient to account for the composition of homeopathic medicines?

(2) If succussion is an essential step in the preparation of homeopathic medicines, what is exactly its role? How does it influence the dilution procedure?

(3) What is the behaviour of complex molecules (eg biopolymers, organic compounds, surfactants, etc.) during the dilution process?

A clear answer to these (and perhaps other) questions is a necessary and essential precondition to any study of ‘pure’ water. Indeed, the conditions of preparation and conservation of homeopathic medicines are far from respecting the simplest procedures required in physical studies of pure water.

Some issues should be controlled more systematically:

(1) Pure water is a very powerful solvent of many substances. For example, it dissolves and forms specific bonds with silica. In contact with the surface of quartz, water forms stable silanol groups (Si–O–H). With time, silica molecules and silicon atoms are solubilised and hydrated. The number of these ‘impurities’ is huge as compared with the calculated amount of molecules of the starting substance in most homeopathic medicines.

It may be useful to recall that the interaction of water with solid surfaces is so strong that studies of nucleation must be done with minute amounts of water kept in levitation, without any contact with solid surfaces. The interaction with solid surfaces is so important that if a supercooled liquid freezes, it must be heated up to temperatures higher than the melting point in order to be supercooled again. Less important for water than for other liquids (eg gallium), this effect is due to more favourable nucleation of the solid form at the solid surface.

Another point deserving investigation is the storage of homeopathic solutions over long periods of time. This procedure is totally incompatible with a chemical purity of water, even at a modest level.

(2) The main consequence of succussion is the insertion of substantial amounts of air from the environment where the procedure takes place. In a laboratory that is not a cleanroom (such as those used for example in electronics), the procedure brings into the solution not only the gases present in the atmosphere (oxygen, nitrogen, argon,…) but also dust particles, micro-droplets of water, etc. Recent studies2 show that the properties of solutions are drastically modified when succussion is done under different atmospheres or at different pressures, a fact which should encourage further studies in this direction.

(3) Many substances, which contain pharmacologically active principles, are not soluble in water. Some are previously diluted in alcohol suggesting the presence of surfactant molecules that go spontaneously to interfaces such as the free surface, the interface between the solution and micro-droplets of gases and the interface with the vial. Again, several very promising and striking studies performed by the analysis of the thermoluminescence of frozen solutions open new and exciting perspectives.3

To summarize, it is striking that in publications concerning highly diluted solutions, chemical ‘purity’ is assumed, solely on the basis of a calculation based on the dilution procedure itself. In fact most of the samples studied are far from being ‘pure water’. It would be interesting to perform to a real analysis of the composition of the solutions with physical methods such as mass spectroscopy.

Properties of liquid water

As stated above, many experiments with homeopathic medicines assume the purity of the highly diluted solutions and attribute its therapeutic action to modifications of the structure and dynamics of the pure liquid itself due to the past presence of a solute.1 Such a strong hypothesis would imply not only general or random changes but also a large variety of changes, specific to each solute. The main purpose of this paper is to recall that this hypothesis is totally incompatible with our present knowledge of liquid water.

Water, in all its forms (crystal, liquid, gas and amorphous forms) is certainly the most studied of all substances. All its properties have been measured with extremely high accuracy in very different conditions, including metastable states and ‘extreme’ conditions. This is due to the central role of water in many scientific domains in physics, chemistry, geophysics and, of course, biophysics. Essentially all known experimental techniques and computer simulations have been used to precise details of the behaviour of water at scales extending from hydrodynamics to the nuclear and electronic levels. In other words, water is not an unknown substance!

However, do we know ‘everything’ about water? Certainly not: several puzzling questions are open to discussion. In brief, the main open question about pure water concerns the supercooled (metastable) state (ie liquid water at temperatures below its freezing point) and its relation with different amorphous (glassy) states. The structure of liquid water, at atmospheric pressure, is not known in a large temperature range extending from the vicinity of the temperature of homogeneous nucleation of ice (−42 °C) down to the temperature of the glass transition (−140 °C). This problem is the object of debate and speculation mostly based in extrapolations of simulations of molecular dynamics performed by computer.[4] and [5]

Another important domain of research is ‘confined water’, ie water occupying extremely small volumes, for example, in porous materials, in thin layers or in small pools formed at hydrophobic sites of bio-molecules. In this case, there is a large variety of situations that depend essentially on the nature of the substrate and on the relative importance of the number of molecules at the surface and in the bulk of the small volume. However, pure water at ambient conditions is well understood. Let us review some of its main properties that may be related to the subject of this paper.

Water is a simple molecule containing three atoms: one of oxygen and two of hydrogen strongly bound by covalent bonds. Because of the hybridisation of the molecular orbitals, the shape of the molecule is a V with the oxygen occupying the vertex of an angle of 104°; the O–H distance is almost exactly 0.1 nm. When two water molecules are sufficiently close, they orient one against the other to establish a chemical bond, called hydrogen bond. In this bond, one hydrogen atom is shared by two neighbouring molecules (Figure 1). The bonding energy is about 10 times larger than the kinetic energy but the bond is ‘fragile’ due the vibratory motions of the hydrogen atom particularly in the direction perpendicular to the line O–Hcdots, three dots, centeredO. It is possible to measure accurately the typical time for which the three atoms are aligned (the lifetime of hydrogen bonds): it is of the order of 0.9 ps (9×10−13 s) at room temperature.


Display Full Size version of this image (9K)

Figure 1. Schematic representation of a hydrogen bond in water. The large circles represent two oxygen atoms of neighbouring molecules; the small circle is the hydrogen atom attached to the oxygen on the left hand side by a covalent bond. The length of the hydrogen bond is 0.18 nm.The hydrogen atom vibrates in all directions. Vibrations perpendicular to the bond are most likely to break the bond.

Because of its geometry, a water molecule can easily form four hydrogen bonds with four neighbouring molecules. This corresponds to the structural arrangement in common ice (Ih or hexagonal form). The angle of 104° is sufficiently close to the tetrahedral angle (109°) to impose this very open structure where each molecule is surrounded by four others at the apex of a tetrahedron (Figure 2). In liquid water this local geometry exists partly: on average a water molecule has 4.5 neighbours but this number decreases with decreasing temperature because the average number of ‘intact’ bonds increases. Incidentally, it is this decrease of the number of first neighbours that explains why the density of water decreases at low temperatures. At 4 °C, which is the temperature of maximum density, this effect compensates that of thermal expansion.


Display Full Size version of this image (33K)

Figure 2. Tetrahedral arrangement of five water molecules. The vibrational motion of a hydrogen atom is represented by an arc on the right-hand side of the figure (adapted from G Walrafen).

The average number of ‘intact’ bonds at a given moment is relatively high, although lower than in alcohols, for example. It is of the order of 60% which justifies seeing liquid water as a 3-dimensional network of hydrogen bonds, like a gel. But a gel with a life time of 1 picosecond (ps)! This means that in an ‘instantaneous picture’ of water structure (possible to obtain by computer simulations) one can identify local structures such as rings of 5, 6 or 7 molecules, regions with higher density of bonds than others, etc. All these structural properties can be identified by several techniques and correspond to thermodynamic properties. For example, the increase of isothermal compressibility observed at low temperatures is due to the enhancement of density fluctuations. It is very important to note that such fluctuations are not due to aggregation or formation of clusters. Hydrogen bonds form and break very rapidly generating short lived fluctuations of local density. In other words, even if at a given moment one can identify a region of higher density than the average, it will disappear after a very short time and will appear statistically in another place without any form of coherent motion such as would exist if a cluster was diffusing inside the liquid.

Historically, the first models of liquid water (due to WC Roentgen) represented liquid water as a mixture of an ideal liquid and small ice-like clusters. This model has been ruled out by many experiments. Among them, small angle X-ray scattering eliminates unambiguously any possibility of existence of clusters or aggregates in liquid water, even at very low temperatures.[6] and [7]

Isolated or confined water molecules can have their mobility totally restricted. In such cases, the lifetime of a hydrogen bond can be infinite. This situation is frequent in proteins where hydrogen bonds with water can play a central role in protein structure. But, in these situations, water molecules don’t constitute a liquid. Consequently, it is worth emphasizing that to postulate the existence of stable structures in pure water is totally wrong. This is one of the limits imposed by the knowledge of the structure of water.

Aqueous solutions

In aqueous solutions, the situation is more diverse. Water can dissolve and mix with many substances in different proportions (salts, acids, various alcohols, sugars, and gases, etc). Both local structure and dynamic properties may be drastically modified. Two well known examples give an idea of the diversity of situations. Trehalose is a sugar that promotes the formation of glassy water even when extremely dilute. It is present in animals and plants which, because of this property, can survive very low temperatures. Other examples are aerogels of silica with a huge content of water, which can contain more than 95% water while remaining macroscopically solid.

Generally speaking, the inclusion of molecules or ions destroys local tetrahedral geometry. Depending on the nature of the compound, the molecules of water arrange in a large variety of local structures. For example, when a salt is dissolved in water, it is dissociated into two ions each of which is surrounded by a layer of hydration where the strong electrostatic interactions between the charge of the ion and the dipoles of water generate a mini-cluster (Figure 3). The life time of this cluster is 10 to 100 times longer than the lifetime of hydrogen bonds but is not infinite, because of the exchange between molecules of water in the hydration shell and those of the bulk.


Display Full Size version of this image (13K)

Figure 3. Schematic representation of the arrangement around an anion (left) and a cation (right). In the first case the dipolar moment of the water molecules is directed towards the ion; in the opposite direction in the case of the anion. The screening of the electrical field of the ions is very efficient and the structure of water beyond the first hydration layer is almost not modified.

However, it is erroneous to believe that the electrical field generated by the ions extends over large distances. Actually, it is screened by the hydration layer. There is a large literature about the structure in hydration shells. The number of water molecules, distances and angles are known with great accuracy from neutron scattering experiments based on isotopic substitution.8

A very different situation concerns the solubility of hydrophobic atoms and molecules, such as methane or noble gases. In this case, water has tendency to form clathrate-like structures around the solute. A clathrate is a polyhedral structure; frequently a dodecahedron with pentagonal faces. This is a very stable structure, because the internal angle of the pentagon (104°) is equal to the internal angle, HOH, of the molecule. It forms a cage and the prisoner is the hydrophobic solute. The short lifetime of hydrogen bonds does not allow the formation of stable or long-lived clusters. Experiments simply detect, at best, a tendency to the formation of short lived planar pentagons.

Finally, it is interesting to consider situations in which stable aggregates are formed. The most interesting, including many industrial applications, are surfactants, which are molecules with a hydrophilic head (sometimes polar) and one or two hydrophobic tails. When dissolved in water in sufficiently large amount (above a critical micellar concentration, c.m.c.) they form structured clusters called micelles (Figure 4). The heads are at the external surface and the hydrophobic tails minimise the interaction energy with water inside the sphere. These structures are very stable. They persist essentially for ever, even if there are many exchanges of surfactant molecules between micelles, either by diffusion or as a result of collisions. Many structures of this type are known, of different sizes and shapes. Some are very important in biology or in pharmacy. For example, bi-layers of phospholipids mimic quite well some physical properties of biologic membranes, and vesicles are sometimes used as vectors or carriers of drugs.


Display Full Size version of this image (50K)

Figure 4. Spherical micellar aggregate showing the hydrophilic heads in contacts with the surrounding water or aqueous solvent. The hydrophobic tails fill the internal part of the spherical droplet.

In small quantities, surfactant molecules migrate to interfaces in geometries that minimise the interaction between the tails and water. Even at very low concentration they can modify substantially the surface tension of water. Whenever surfactant molecules are present in a substance, one must take into account their specific interactions with water.

Conclusion

To summarize this short overview, one can say that water is a ‘complex’ liquid with many fascinating, sometimes unique aspects. Except for some academic aspects concerning supercooled water, the structure of the liquid is well known. In particular, it is certain that:

(a) There are no water clusters in pure liquid water, but only density fluctuations.

(b) The longest life of any structure observed in liquid water is of the order of 1 ps (10−12 s).

This is why any interpretation calling for ‘memory’ effects in pure water must be totally excluded.

In contrast, there is great variety of behaviour of solutes depending on many parameters. Even in small quantities, some solutes can modify substantially some properties of pure water. Special attention should be given to surfactants, sugars and polymeric substances. Since homeopathic medicines are prepared in ‘extremely high dilutions’ but following a procedure that does not produce necessarily extremely pure water, experiments should address the problem of the presence of minute amounts of solutes as has recently been done recently, with striking results.2

Otherwise, as stressed at the beginning, the advantages of homeopathic treatments should be taken at a medical level, which, after all, is the case for other drugs recognized for their remarkable although not yet explained effectiveness.

References

1 E. Davenas, F. Beauvais and J. Amara et al., Human basophil degranulation triggered by very dilute antiserum against IgE, Nature 333 (1988), pp. 816–818. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

[2] L. Rey, Can low temperature Thermoluminescence cast light on the nature of ultra-high dilutions?, Homp 96 (2007), pp. 170–174. SummaryPlus | Full Text + Links | PDF (267 K)

3 L. Rey, Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride, Physica A 323 (2003), pp. 67–74. SummaryPlus | Full Text + Links | PDF (306 K) | View Record in Scopus | Cited By in Scopus

4 O. Mishima and H.E. Stanley, The relationship between liquid, supercooled and glassy water, Nature 396 (1998), pp. 329–335. View Record in Scopus | Cited By in Scopus

5 J. Teixeira, A. Luzar and S. Longeville, Dynamics of hydrogen bonds: how to probe their role in the unusual properties of liquid water, J. Phys.: Cond. Matter 18 (2006), pp. S2353–S2362. Full Text via CrossRef

6 R.W. Hendricks, P.G. Mardon and L.B. Schaffer, X-ray zero-angle scattering cross section of water, J. Chem. Phys. 61 (1974), pp. 319–322. Full Text via CrossRef

7 L. Bosio, J. Teixeira and H.E. Stanley, Enhanced density fluctuations in supercooled H2O, D2O and ethanol–water solutions: evidence from small-angle X-ray scattering, Phys Rev Lett 46 (1981), pp. 597–600. Full Text via CrossRef

8 L. Friedman H, A Course in Statistical Mechanics, Prentice Hall College Div. (1985).

Corresponding Author Contact InformationCorrespondence: Laboratoire Léon Brillouin (CEA/CNRS), CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.



Homeopathy
Volume 96, Issue 3, July 2007, Pages 158-162
The Memory of Water

Journal Club – “The nature of the active ingredient in ultramolecular dilutions”

November 1st, 2014 by Ben Goldacre in journal club | No Comments »

This is part of the Homeopathy journal club project described here:

www.badscience.net/?p=490

doi:10.1016/j.homp.2007.05.005 How to Cite or Link Using DOI (Opens New Window)
Copyright © 2007 Elsevier Ltd All rights reserved. The nature of the active ingredient in ultramolecular dilutions Otto WeingärtnerCorresponding Author Contact Information, a, E-mail The Corresponding Author
aDepartment of Basic Research, Dr. Reckeweg & Co. GmbH, Berliner Ring 32, D 64625 Bensheim, Germany
Received 8 March 2007; revised 14 May 2007. Available online 31 July 2007.

Abstract

This paper discusses the nature of the active ingredient of homeopathic ultramolecular dilutions in terms of quantitative physics.

First, the problem of the nature of an active ingredient in ultramolecular dilutions is analysed leading to the recognition of the necessity of characterizing the active ingredient as a non-local quality.

Second, non-locality in quantum mechanics, which is used as a paradigm, is formally presented.

Third, a generalization of quantum mechanics is considered, focussing on the consequences of weakening of the axioms.

The formal treatment leads to the possible extension of the validity of quantum theory to macroscopic or even non-physical systems under certain circumstances with a while maintaining non-local behaviour. With respect to the survival of entanglement in such non-quantum systems a strong relationship between homeopathy and non-local behaviour can be envisaged. I describe how several authors apply this relationship. In conclusion, the paper reviews how quantum mechanics is closely related to information theory but why weak quantum theory and homeopathy have not hitherto been related in the same way.

Keywords: potencies; non-locality; entanglement; weak quantum-theory; information

Article Outline

Introduction
Necessity of a general principle
How non-locality arose
What is entanglement?
Weakening the axioms of quantum mechanics
WQT and homeopathy
Entanglement and information in quantum physics and beyond
Discussion
Acknowledgements
Appendix A. The sequential box model (SBM)
Appendix B. Entanglement
References


Introduction

When I started basic research on homeopathy more than 20 years ago I endeavoured to describe homeopathic potencies according to the laws of physics as far as possible. This soon led me to the hypothesis of a field being responsible for the homeopathic phenomenon. In investigating this hypothesis I learned from biophysics that such a field has to be closely related to electromagnetism, because of the ability of living organisms to react in a specific way on electromagnetic signals.1 I concluded that the mechanism of homeopathic effects must be similar to resonances between electromagnetic waves and started to search for stored patterns of electromagnetic origin or, more generally, of physically measurable properties which differ between potencies and their solvent.

The results of the series of experiments that were carried out with a variety of standard physical–chemical methods2 were disappointing. Almost none of the experiments could reproduce results reported in specialist literature, and for no experimental arrangement could the results be forecast. However, the totality of experiments with nuclear magnetic resonance (NMR) showed a clear tendency in favour of a difference between potencies and their solvent in the water- and OH-portions of the ethanol–water-molecule.3 I was quite pleased with this tendency, which is now being investigated by other researchers,4 but I realized that looking for effects without having any clue of their significance is hazardous. Therefore, I started building models for the ‘Therapeutically Active Ingredient’ (TAI) and it soon became clear that models for the TAI have to have holistic character.5

While playing with models, I developed a construct which I called the ‘Sequential Box Model’ (SBM, see Appendix A). SBM is a thought experiment illustrating that the homeopathic phenomenon can be treated within physics with no consideration of the degree of dilution. Furthermore, the SBM explicitly underlines the long-standing presumption that for a TAI to emerge during the potentization procedure a quality beyond ordinary correlation between particles has to occur or be in existence already.

About this time the idea of the so-called ‘quantum computing’ was proposed in computer science.[6] and [7] This involves the idea of non-local correlations between states of entities. For my work, such non-local behaviour was the missing link between the SBM and a possible TAI, particularly as it was already known that non-local behaviour can occur in non-quantum systems under certain circumstances. The relationship between non-local behaviour of events in nature and the homeopathic phenomenon may give a clue to the ‘nature of the active ingredient in ultramolecular dilutions’ (NAIUD). It is the aim of this paper to analyse this relationship without going too far into technical details.

Necessity of a general principle

When we talk about the active ingredient of ultramolecular dilutions as used in homeopathy, we mean a non-material quality which—according to the principles of homeopathy—can be traced back to a substance. Moreover, this quality is understood to be able to make the symptoms of a patient disappear when administered via a vehicle. Many people call this quality ‘information’. Let us first look at the set of events that are required for a therapeutic active ingredient to develop out of a substance. In this context, the existence of a TAI is temporarily assumed as being proven by successful treatment (Figure 1).

1. First of all, a proving (homeopathic pathogenetic trial) must have been conducted resulting in a drug picture with specific symptoms.
2. A mother tincture is prepared from the substance.
3. Apart from some specific procedures for the preparation of low potencies that depend on the nature of the substance itself, the mother tincture is potentized stepwise with no consideration of the degree of dilution. Dilutions far beyond Avogadro’s number are used in daily practice.
4. When a homeopathic potency is prescribed, this is done according to the law of similars without consideration of the occurrence or not, of any molecule of the original substance in the medicine administered.
5. An artificial disease is triggered off resulting in healing.

These points demonstrate that the active ingredient of homeopathic potencies might have a variety of possible originators, especially when we only look at the squares and arrows in Figure 1 separately. There is no reason as to why two or more of these originators should complement one another. But if we look at Figure 1 as a whole, the necessity of a general principle becomes obvious. For such a principle, the symptoms of the homeopathic drug picture, the principle of releasing hidden energies of the substances by potentizing, the law of similars and the triggering of an artificial disease are specific projections. The problem is, how to specify this principle, especially with respect to the following questions:

1. Could such a general principle possibly be derived from the presence of a physical field?
2. For ultramolecular dilutions, interactions between molecules of the solute and those of the solvent do not make sense in terms of current scientific understanding. How can this be resolved?
3. Are there any reliable arguments for a concept of a global influence being responsible for an active ingredient in homeopathic potencies? Rupert Sheldrake’s morphogenetic field8 might serve as an example of such a concept.

In physics, fields are inevitably linked to interaction between material partners via interaction-particles. Photons, for instance, are the interaction-particles of the electromagnetic field.9 Thus, potentization as well as treatment with potencies—procedures that implicitly do not depend on matter–matter-interaction—are not primarily based on physical fields.


Display Full Size version of this image (24K)

Figure 1. Schema of events which are required for a TAI to: (a) develop out of a substance, and (b) proved to be existent by successful treatment. Arrows represent procedures, they map states onto states.

Both procedures, however, suggest mind–matter and matter–mind correlations.

1. Neither a specific chemical nor a specific physical property of the original substance is known to be transferred during the preparation of potencies although mother tinctures, which of course contain many molecules of the original substance, are mandatory for a starting point of this procedure. Potentization here appears to embody a procedure that relates matter to mind.
2. No common donor–acceptor-mechanism is known to be responsible for the effects of potencies. Treatment appears to embody a procedure that relates the ‘mind of matter’ to the ‘mind of illness’. The latter of course itself is strongly related to biological matter and is often looked upon as a relationship belonging to psychosomatics.

Are these correlations better described by interaction mechanisms that are not linked to particles? A possible alternative is non-local correlations, known from specific effects in quantum physics. Roughly speaking these correlations have the following characteristic:

1. Non-local correlations between systems or entities represent a real simultaneous behaviour of the correlation partners because no interacting particles (which have a finite speed and therefore cause a time delay) are necessary for interaction.
2. Non-local correlations are not able to interchange matter but only non-material information.
3. Non-local correlations are, in principle, independent of spatial distances.

How non-locality arose

Although Einstein was one of the founders of quantum physics, he did not accept quantum mechanics as to be a complete description of the phenomena of the micro world. He explained the reason for this attitude in a paper which he published with Podolsky and Rosen in 1935. In this famous paper, the three physicists described a thought experiment in which two physical quantities have simultaneous reality.10 For Einstein, this was a counter example for the completeness of quantum mechanics as a description of nature and for the rest of his life he did not change this attitude. He was not willing to accept counter-intuitive features in the description of nature. Schrödinger later on called this counter-intuitive property of quantum systems ‘entanglement’. Only three decades later, John Bell11 gave a theory-based criterion by which it was possible to decide whether a system is a quantum system or not. This criterion was applied in 1982 by Aspect and co-workers to an experimental arrangement in which they showed, for the first time, that entangled states can occur in quantum systems.12 Since then many properties of systems in micro-physics have been demonstrated in experimental arrangements based on entanglement.[5], [6] and [7] All have one thing in common: ‘Entanglement in quantum systems’.

What is entanglement?

Entanglement is a highly counter-intuitive quality of quantum systems. The fact that entanglement is irrelevant to Newtonian physics does not justify the assumption that quantum physics is the only field where entanglement occurs. At least theoretically, entanglement can occur in any system that fulfils a certain set of axioms. Entanglement comes in various guises and it is not easy for non-specialists to see whether a phenomenon belongs to the category of entangled systems or not. For our purposes, it should suffice to get a clue what entanglement is, without too much technical fuss. Readers who are interested in a more precise explanation are referred to Appendix B.

As an example let us imagine a secluded island exclusively inhabited by females. Being asked what human beings are, the inhabitants of this island would most probably point their fingers at themselves. Similarly, the inhabitants of another island exclusively inhabited by males would identify human beings with males. For the rest of the world, human beings are females as well as males. This is a description of a factual connection, where a generic quality in a system has a different meaning in its subsystems. Furthermore, if we look at pairs of human beings there might be couples among them in the rest of the world, in total contradiction to the local meaning in the two islands.

A generalization of this example leads to the following. Let p1 be a particle in a system A and let p2 be another particle in a system B. System A and system B are assumed to be disjoined, ie have no common points/particles. System A rules the behaviour of particle p1 and system B does the same for particle p2 (see Figure 2).


Display Full Size version of this image (18K)

Figure 2. Schema of two entangled systems A and B. p1 and p2 are assumed to be correlated. Seen from (A+B) correlation can be observed. Seen from A or B only local observations are possible.

It might be that states of the totality of the two systems occur which cannot be recognized in system A or in system B alone, but are exclusively linked to the recognition of (A+B) as a third generic system. In the above example as well as in the following generalization constellations, in which global observations are not compatible with local ones, are possible. This is the idea behind entanglement.

Weakening the axioms of quantum mechanics

Quantum mechanics deals with states zi and observables P, Q of quantum systems. Examples of observables are momentum, angular momentum, etc. Observables are thought to act as maps on the set of states. So, an observable P maps a state z1 into another state z2. Onto z2 a second observable Q may be applied resulting in a state z3. Unlike in classical mechanics in quantum mechanics one does not always have P(W(z))=Q(P(z)) or equivalently:

Pring operatorQ-Qring operatorP≠0,

where ‘ring operator’ is to be interpreted as ‘apply to’, where ‘0’ on the right-hand side of this inequality denotes the ‘zero-operator’ and where states ‘z’ have been omitted. Such a relation is known as a ‘commutation-relation’ of the two observables. Using states and observables as well as their relation to each other, quantum mechanics can be described as an algebraic system whose behaviour is ruled by a set of axioms that reflect the physical properties.In 2002, Atmanspacher et al. published13 the idea that weakening the axioms of quantum theory (weak quantum theory, WQT) could lead to theories that are no longer quantum systems or even physical systems at all, but which still have the property of possible entanglement. To be more precise, Atmanspacher et al. considered systems that comply with the following conditions (see also14):

1. Systems are any part of reality.
2. Systems are assumed to have the capacity to reside in different states. The set of states is not assumed to have the structure of the above-mentioned abstract space.
3. Observables are features of a system which can be investigated. They map states into states.
4. The composition Pring operatorQ of two observables is also an observable. P and Q are called compatible if they commute (ie Pring operatorQ-Qring operatorP=0).
5. To every observable P there is a set of different (possible) outcomes.
6. There are special observables (propositions) whose possible outcomes are either ‘yes’ or ‘no’. They follow the laws of ordinary proposition logic and have specific spectral properties (omitted here).

Within these conditions entanglement arises if global observables P pertaining to all of a system are not compatible to local observables Q pertaining to parts of the system (iePring operatorQ-Qring operatorP≠0).

WQT and homeopathy

Since WQT systems are not necessarily quantum systems, WQT could be a tool to develop models for phenomena which are not quantum but have features which resemble entanglement, for instance, homeopathy. Several authors therefore have applied WQT to the homeopathic phenomenon. Walach, one of the co-authors of the original WQT paper,15 presented a model in which the two semiotic processes ‘substance and potency’ as well as ‘drug picture and symptoms of the patient’ are assumed to be entangled by the law of similars. Milgrom has sketched a model for the homeopathic phenomenon in which the three pairs ‘Patient and practitioner’, ‘patient and remedy’ as well as ‘practitioner and remedy’ are assumed to be entangled in pairs.16 In a metaphorical way he derives, in succeeding papers, from this entanglement triangle an astonishing variety of principles of homeopathy.

Both models presuppose the validity of WQT for the specific situation in homeopathy and Milgrom, at least, deduces implications which reflect the way homeopaths think. In terms of logic, the approach of these two models is called the sufficiency part of a proof. The necessity part would be the proof that the assumptions which underlie homeopathy such as the potentization, the law of similars, etc., fit the preconditions of WQT.

I have tackled the TAI problem in a previous paper.17 This is where the SBM (see Appendix A) becomes relevant as a thought model, because it characterizes homeopathic potencies as a real physical system in which an unknown inner correlation is sought. In essence, paper17 showed that sets {Ji1,…,im·σi1,…,im·σi1,…,im} of spin-like states, where indices i1,…,im vary over permutations, fit the axioms of WQT for an arbitrary big system BN in the SBM. The sets {Ji1,…,im·σi1,…,im·σi1,…,im} are a generalization of couplings (Jik·σi·σk) of two spins, in NMR-theory, for instance. The generalization strongly suggests to investigate the possibility of global couplings instead of pair-to-pair couplings.

In summary, a number of arguments exist for non-locality being the general principle underlying the NAIUD. Quantum mechanics, however, cannot be considered, without further investigations, the theoretical frame for the NAIUD. The paradigm is rather non-locality. Quantum physics is merely the scientific discipline where non-locality has proven to occur in reality. Figure 3 gives a schematic classification of phenomena which can be treated within quantum mechanics, and those which have less structure in the set of their states and therefore need another theoretical environment, WQT. Questions concerning the NAIUD might even go beyond WQT.


Display Full Size version of this image (10K)

Figure 3. (I) The set of phenomena understood by quantum mechanics (essentially quantum physics); (II) the set of phenomena possibly understood by weak quantum theory (ie quantum physics and beyond); and (III) the set of phenomena belonging to homeopathy, possibly not a proper subset of II. Although quantum mechanics is an excellent paradigm for entanglement occurring in nature, quantum mechanics itself is not the frame in which NAIUD can be described.

Entanglement and information in quantum physics and beyond

It is the purpose of this section to explain the considerable difficulties one should be aware of when applying WQT instead of normal quantum mechanics to systems in nature.

This will be exemplified by the difficulties which arise when the attempt is made to translate ‘informational content’ (=entropy) in a quantum system to a system which is not quantum but which can be investigated by WQT. For formally correct representations of the factual connections given here, the reader is referred, for instance, to.6

The key concept of classical information theory is that of Shannon entropy. According to this concept, the entropy of a random variable A quantifies how much information we gain, on average, when we learn the value of A. Conversely, the entropy of A measures the amount of uncertainty about A before we learn its value. Thus, on the one hand, entropy measures the uncertainty associated with a classical probability distribution. On the other hand, in quantum ensembles density operators ρ, which represent the statistics of ensembles of different molecules in different states, formally replace probability distributions.

It was John von Neumann’s brilliant insight that in quantum mechanics the entropy S(ρ) of ρ can be expressed by the formula

Click to view the MathML source

where λx are the eigenvalues of the density operator ρ. If entanglement between two subsystems of a quantum system occurs and if one considers the density operators of these subsystems separately it can be shown that the von Neumann entropy of one of these reduced density operators is a measure of the degree of entanglement. This measure has an upper bound log(s), where s (the Schmidt-number) is the dimensionality of an abstract space in which these states ‘live’. Clearly, the bigger the s, the more the particles or states entangled. Applied to an arbitrary box BN of the SBM this suggests that the bigger the box BN is, the larger s has to be chosen and therefore the larger the measure of the amount of information.These considerations, however, presuppose entanglement of those particles being directly concerned. If we turn to a situation where WQT has to be applied instead of quantum mechanics, many of the basic constituents are no longer present or at least no longer adequately defined. For instance, if the set of states is structured so poorly then the above formula for von Neumann entropy makes no sense.

Discussion

The principle of non-local behaviour of systems in nature, first investigated in the context of the counter-intuitive phenomena of quantum physics, is not necessarily restricted to physics at the micro scale. This is the essence of WQT. Roughly speaking WQT shows that in every system where local and global observables do not commute with each other non-local behaviour is possible. For some authors, WQT was the reason for using non-locality to characterize the nature of the active ingredient of ultramolecular dilutions. Some models have simply drawn consequences from such a possible generalized non-locality, another looks at the real potentization procedure, asking what non-locality might contribute to an active ingredient. But WQT is not known to be powerful enough to describe the NAIUD entirely.

So the question arises, why considered WQT in such detail in connection with homeopathy? The answer is simple. With WQT, for the first time, special emphasis is placed quantitatively on entanglement as an idea. Moreover, WQT has shown to be a powerful tool for the characterization of the physics of the class of mathematical problems which arise when the NAIUD is to be described.

It is a great temptation to use WQT as a special way of describing the laws of quantum physics. People who do so tend to ignore the restraints given of WQT and use it as a theory applicable to everything, including the NAIUD. This is certainly not the right way to describe the NAIUD. An attempt to characterize the informational content of a system to be investigated by WQT, shows that it is not easy to generalize the concept in quantum mechanics to WQT or beyond.

Of course, all these considerations do concern the NAIUD in modelling situations. The question is, why do such work instead of looking for the TAI in experiments? The answer is that model building is a method of finding a way of thinking which allows us to understand a set of phenomena in a wider context. In contrast, experimental work tends to reductionism. I hope that both tendencies will ultimately meet.

Acknowledgement

This paper was partially done within the project ‘Modelling and simulating the therapeutically active ingredient of homeopathic potencies’ which was supported by the Carstens-Foundation.

References

1 Fröhlich H, Kremer F (eds). Coherent Excitations in Biological Systems. Berlin, Heidelberg, New York: Springer, 1983.

2 O. Weingärtner, Homöopathische Potenzen, Springer, Berlin, Heidelberg, New York (1992).

3 O. Weingärtner, Kernresonanz-Spektroskopie in der Homöopathieforschung, KVC-Verlag, Essen (2002).

4 J.L. Demangeat, P. Gries and B. Poitevin et al., Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica–lactose prepared in glass material for pharmaceutical use, Appl Magn Reson 26 (2004), pp. 465–481. View Record in Scopus | Cited By in Scopus

5 O. Weingärtner, Über die wissenschaftliche Bearbeitbarkeit der Identifikation eines ‘arzneilichen Gehalts’ von Hochpotenzen, Forsch Komplementärmed Klass Naturheilk 9 (2002), pp. 229–233. View Record in Scopus | Cited By in Scopus

6 M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000).

7 C.P. Williams and S.H. Clearwater, Explorations in Quantum Computing, Springer, New York (1998).

8 R. Sheldrake, The Presence of the Past, Times Book, New York (1988).

9 J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, McGraw-Hill Book Company, New York (1965).

10 A. Einstein, B. Podolsky and N. Rosen, Can quantum–mechanical description of physical reality be considered complete?, Phys Rev 47 (1935), pp. 777–780. Full Text via CrossRef

11 J.S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1 (1964), pp. 195–200.

12 A. Aspect, P. Grangier and G. Roger, Experimental realization of Einstein–Podolsky–Rosen–Bohm–Gedanken experiment: a new violation of Bell’s inequalities, Phys Rev Lett 48 (1982), pp. 91–94. Full Text via CrossRef

13 H. Atmanspacher, H. Römer and H. Walach, Weak quantum theory: complementarity and entanglement in physics and beyond, Found Phys 32 (2002), pp. 379–406. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

14 Römer H. Weak Quantum Theory and the Emergence of Time, 2004, arXiv:quant-ph/0402011 v1, 2 February 2004.

15 H. Walach, Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory, Forsch Komplementärmed Klass Naturheilk 10 (2003), pp. 192–200. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus

16 L. Milgrom, Patient-practitioner-remedy (PPR) entanglement. Part 1: a qualitative, non-local metaphor for homeopathy based on quantum theory, Homeopathy 91 (2002), pp. 239–248. Abstract | Abstract + References | PDF (240 K) | View Record in Scopus | Cited By in Scopus

17 O. Weingärtner, What is the therapeutically active ingredient of homeopathic potencies?, Homeopathy 92 (2003), pp. 145–151. SummaryPlus | Full Text + Links | PDF (156 K) | View Record in Scopus | Cited By in Scopus

Appendix A. The sequential box model (SBM)

Imagine a certain volume of mother tincture is present in a box B0. Then imagine the contents of B0 are poured into another box B1, 10 times bigger than B0 and already 9/10th full of solvent. Imagine then B1 being vigorously shaken as in the preparation procedure of homeopathic potencies. Imagine then the whole content of B1 being poured into another box B2, 10 times bigger than B1 and again 9/10th full of solvent.

This procedure can be continued to an arbitrary box BN and it is clear that:

1. In every Box BN the whole volume of mother tincture is present, ie the problem of high potencies can be, at least in a thought experiment, treated physically.
2. If one attempted to conduct this experiment in reality the procedure would come to an end very soon because of the unrealizable dimensions of the boxes.
3. The higher N grows the less probable is the occurrence of a molecule in a random sample taken out of BN. This means that in BN an additional property has to be present which carries the information of B0. This property has to be non-local.

Appendix B. Entanglement

Mathematicians represent every point in the three-dimensional space of our experience as a sum of multiples of vectors of unit lengths in the x-, y- and z-axes. In the same way, they often represent objects in abstract spaces as sums of multiples of basic elements of these spaces. A direct application of this to quantum physics leads to the following.[6] and [7]

The states of quantum systems are mathematically represented by elements (points in) of an abstract Hilbert-space H. If points in this space are denoted by ψ and if the basic elements of H are denoted by phii (i=1,2,…), representations of states look like

Click to view the MathML source

This is commonly known as the principle of superposition in quantum mechanics, ie a wave function ψ is the superposition of multiples ai of basis ‘waves’ phii. In case of two particles forming two different systems we have the two representations:

Click to view the MathML source

Click to view the MathML source

where the numberings (1) and (2) are used to distinguish between the two. For the sake of clarity, we also index the Hilbert-spaces belonging to each of these representations (and get H1 and H2, respectively) although they are usually identical.The crucial point now is the consideration of a system consisting of the two particles as a whole. In this case, it is necessary to construct another Hilbert-space H=H1circle times operatorH2 out of H1 and H2 in such a way that this new system ‘lives’ in H1 and in H2 at the same time. In order to achieve this, a so-called tensor-product H1circle times operatorH2 is formed. This is a new Hilbert-space whose points have the form

Click to view the MathML source

where Φi,j denote basis elements in H=H1circle times operatorH2 and ci,j their multiples. Entangled states are those (ψ(1)ψ(2)) for which the multiples ci,j cannot be written as

ci,j=aibj,

with ai and bj being the multiples from above and independent from each other.Remarks

1. The above relation between states can be interpreted as the possible arising of additional qualities when two single systems are looked upon as a whole.
2. The set of entangled states in most of quantum systems is not empty. For many systems, the subset of possibly entangled states is much bigger than the non-entangled.
3. The above characterization is not restricted to pairs of particles.
4. States (ψ(1)ψ(2)) in H=H1circle times operatorH2 which cannot be split into products of pure states in H1 and H2, respectively, might be imagined as the pure states of the composite system.
5. The description of entanglement in quantum mechanics, which is a counter-intuitive, strongly depends on a mathematical apparatus with a rich structure.


Corresponding Author Contact InformationCorrespondence: Otto Weingärtner, Department of Basic Research, Dr. Reckeweg & Co. GmbH, Berliner Ring 32, D 64625 Bensheim, Germany.



Homeopathy
Volume 96, Issue 3, July 2007, Pages 220-226
The Memory of Water